
7. Appendix

7.1. WavCoch Architecture Details

As shown in Figure 1A, the raw waveform (shape: 1 → 80,000
for 5s of mono audio sampled at 16kHz) is first transformed into
the time–frequency domain via a fixed-kernel discrete Fourier
transform implemented as a bank of 1D convolutional filters
(window size 1,001 samples, hop length 80 samples). The fil-
ter weights—the complex sinusoidal basis functions (or Twid-
dle Factors [1]) of the discrete Fourier transform—slide over
the signal to produce a spectral representation with one fea-
ture vector every 5ms. Second, each 5ms temporal step of
this frequency representation is passed through an 8-layer en-
coder stack (each layer is a 1D convolution with 512 chan-
nels, kernel size 3, stride 1, ReLU nonlinearities), yielding a
sequence of 512-dimensional embeddings. Third, these embed-
dings are then passed through a 13-dimensional LFQ bottleneck
[2], which effectively binarizes the representation. We read out
the activations of this bottleneck as a 13-bit binary code which
can be interpreted as one of 213 = 8, 192 discrete tokens. We
determined that 13-bits is the optimal vocabulary size by ablat-
ing vocabulary sizes and evaluating out-of-distribution perfor-
mance on cochleagram reconstruction error and phoneme clus-
ter purity; 12-bit and 14-bit codes yielded inferior performance
(see full ablation details in Appendix 7.2). Fourth, the output
of the LFQ bottleneck is passed through a decoder stack (each
layer is a 1D convolution with 211 channels, kernel size 9, stride
1, ReLU nonlinearities). This decoder output corresponds to the
frequencies in the cochleagram representation [3], which the
model is supervised to match via L2 error. An auxiliary entropy
penalty with a weight of 0.001 is applied at the LFQ bottleneck
to encourage diversity, in line with [2]. Thus, for every 5 sec-
onds of audio, WavCoch extracts a sequence of 988 integers
in the range [0, 8192) through the LFQ bottleneck, denoted as
cochlear tokens, to feed into AuriStream (illustrated in Figure
1B).

7.2. WavCoch Vocabulary Size Ablations

We performed ablations to identify the optimal vocabulary size
of the WavCoch model. We trained variants of WavCoch us-
ing a vocabulary size of 4,096, 8,192, and 16,384 (12-, 13-
and 14-bit codes, respectively) on the LibriSpeech960 dataset
[4]. For each of these models, we evaluated the cochleagram
reconstruction L2 error and phoneme cluster purity on an out-
of-distribution test set (TIMIT test set [5]). Phoneme cluster pu-
rity was defined as purity = (count of most associated phoneme
for token i) / (total counts for token i) providing an intuitive
metric for how consistently a given token aligns with a specific
phoneme. Figure I shows that a vocabulary size of 8,192 (13-bit
code) yields both the lowest reconstruction error and the highest
phoneme cluster purity.

7.3. WavCoch Target Representations: Cochleagram vs.

Mel Spectrogram

To evaluate the impact of using the biologically-inspired
cochleagram representation [6, 3] as the WavCoch prediction
target as opposed to the more standard deep learning practice
of using a mel-spectrogram, we trained a version of WavCoch
using mel-spectrograms (80 mel bins and 5ms temporal bins) as
prediction targets. Both cochleagram- and mel-based WavCoch
models were trained on the publicly available LibriSpeech960
dataset [4], consisting of 960 hours of speech recordings. Since
the L2 reconstruction error is not directly comparable between a

Figure I: Evaluation of WavCoch trained with different vocab-
ulary sizes. We plot the L2 cochleagram reconstruction error
(blue) and the phoneme cluster purity (green) on the out-of-
distribution TIMIT test set.

Table I: Evaluation of WavCoch trained with different predic-
tion targets. Codebook usage and phoneme cluster purity eval-
uated on the out-of-distribution TIMIT test set.

Target Codebook Usage ↑ Cluster Purity ↑
Cochleagram 8,172 0.3517

Mel-Spectrogram 8,151 0.3473

cochleagram and a mel-spectrogram, we investigated two proxy
measures of representational quality: i) The number of unique
codes utilized in the quantized representation (“codebook us-
age”), and ii) Phoneme cluster purity (defined as purity = (count
of most associated phoneme for token i) / (total counts for to-
ken i)) Both metrics were computed on the out-of-distribution
TIMIT test set [5] and are reported in Table I.

First, in terms of codebook usage, we found that the Wav-
Coch model trained with the cochleagram target utilized slightly
more codes than the model trained with the mel-spectrogram
target to represent out-of-distribution speech data (TIMIT test
[5]). Second, the cochleagram-based WavCoch model achieved
a slightly higher average phoneme cluster purity on the TIMIT
test set than the mel-spectrogram model. While these differ-
ences are relatively small, they suggest that the cochleagram
representation performs at least as well as, if not slightly better
than the mel-spectrogram in this setting.

Beyond the quantitative analyses reported in Table I, we
prefer the cochleagram over the mel-spectrogram representation
for conceptual reasons: The ultimate goal of our framework is to
move towards more biologically plausible speech models, and
the cochleagram is more aligned with this goal.

7.4. Comparison Models

AuriStream is compared to five state-of-the-art speech
representation models using the HuggingFace Transform-
ers package: HuBERT-base (identifier: facebook/hubert-
base-ls960), HuBERT-xl (identifier: facebook/hubert-xlarge-
ll60k), wav2vec2-large (identifier: facebook/wav2vec2-large),
WavLM-base (identifier: microsoft/wavlm-base), and WavLM-
large (identifier: microsoft/wavlm-large). For the SUPERB
benchmark, we additionally compare against two smaller mod-
els which share some similarity to AuriStream, specifically,
APC and vq-wav2vec.



7.5. Confusion Matrix for Phoneme Decoding

Figure II shows the phoneme confusion matrix for AuriStream-
1B in the linear decoding task (see Section 3.1). The error pat-
terns were sensible: for instance, “er” was often confused with
“r’, or “ah” with “ih”.
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Figure II: Confusion matrix for phoneme decoding. The plot
shows which phonemes were confused with each other from the
AuriStream-1B model on the TIMIT test set. The plot is shown
on a log colorscale to better highlight the mismatches between
true and predicted labels.

7.6. Sonifying AuriStream Predictions through Cochlea-

gram Inversion

We investigate AuriStream’s predictions by inverting the
cochleagrams into audible waveforms. To this end, we de-
veloped a simple per-sample optimization procedure that con-
structs a waveform that matches the cochleagram prediction.
Specifically, we optimize a tensor of shape (1 → 80,000)—
initialized with random numbers from a normal distribution
with mean 0 and variance 1—representing the waveform in-
put to make its cochleagram representation match the cochlea-
gram predicted by WavCoch (via L2 error). We backpropagate
through the cochleagram transformation and use the Adam op-
timizer with a learning rate of 1e-2. Note that this optimization
procedure is not a learned vocoder model, but a simple proce-
dure which converts the output of WavCoch, the cochleagrams,
into audible sound (conceptually similar to Griffin-Lim algo-
rithm).

Several audible samples of speech generations from
AuriStream-1B are available at the following link:
https://tukoresearch.github.io/auristream-speech/. Please
access the page using Google Chrome as we have seen some
cases in which Safari and Firefox are not properly loading these
videos.

We observed that on short timescales, the model produces
reasonable completions, but the longer the completion, the more
the predictions drift away from being plausible. We want to
emphasize that the purpose of AuriStream is not to be a lan-
guage model, but a speech representation model—the fact that
it can perform rudimentary language modeling is a serendipi-
tous side effect of the training objective, which points to the

fact that learning patterns in speech, and producing language
may be operationalized under a unified objective. These find-
ings serve as great motivating factors for follow-up work, which
will attempt to stabilize speech generations with longer-term co-
herence, building on the foundation laid out in this paper.
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